Can large language model agents simulate human trust behaviors?
Large Language Model (LLM) agents have been increasingly adopted as simulation tools to model humans in applications such as social science. However, one fundamental question remains: can LLM agents really simulate human behaviors? In this paper, we focus on one of the most critical behaviors in hum...
主要な著者: | Xie, C, Chen, C, Jia, F, Ye, Z, Shu, K, Bibi, A, Hu, Z, Torr, P, Ghanem, B, Li, G |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Neural Information Processing Systems Foundation
2024
|
類似資料
-
CRAB: cross-environment agent benchmark for multimodal language model agents
著者:: Xu, T, 等
出版事項: (2024) -
Large Language Models: Trust and Regulation
著者:: David Banks, 等
出版事項: (2024-08-01) -
CAT: enhancing multimodal large language model to answer questions in dynamic audio-visual scenarios
著者:: Ye, Q, 等
出版事項: (2024) -
Select to perfect: imitating desired behavior from large multi-agent data
著者:: Franzmeyer, T, 等
出版事項: (2024) -
Language model tokenizers introduce unfairness between languages
著者:: Petrov, A, 等
出版事項: (2024)