Model-agnostic pricing of exotic derivatives using signatures
<p>Neural networks hold out the promise of fast and reliable derivative pricing. Such an approach usually involves the supervised learning task of mapping contract and model parameters to derivative prices.</p> <p>In this work, we introduce a model-agnostic path-wise approach to de...
Główni autorzy: | Alden, A, Ventre, C, Horvath, B, Lee, G |
---|---|
Format: | Conference item |
Język: | English |
Wydane: |
Association of Computing Machinery
2022
|
Podobne zapisy
-
Numerical method for model-free pricing of exotic derivatives in discrete time using rough path signatures
od: Lyons, T, i wsp.
Wydane: (2020) -
The agnostic's response to climate deniers: price carbon!
od: van Der Ploeg, F, i wsp.
Wydane: (2018) -
The agnostic's response to climate deniers: price carbon!
od: Van der Ploeg, R, i wsp.
Wydane: (2017) -
Non-parametric pricing and hedging of exotic derivatives
od: Lyons, T, i wsp.
Wydane: (2021) -
Normal tissue transcriptional signatures for tumor-type-agnostic phenotype prediction
od: Corey Weistuch, i wsp.
Wydane: (2024-11-01)