Model-agnostic pricing of exotic derivatives using signatures
<p>Neural networks hold out the promise of fast and reliable derivative pricing. Such an approach usually involves the supervised learning task of mapping contract and model parameters to derivative prices.</p> <p>In this work, we introduce a model-agnostic path-wise approach to de...
Autori principali: | Alden, A, Ventre, C, Horvath, B, Lee, G |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Association of Computing Machinery
2022
|
Documenti analoghi
-
Numerical method for model-free pricing of exotic derivatives in discrete time using rough path signatures
di: Lyons, T, et al.
Pubblicazione: (2020) -
The agnostic's response to climate deniers: price carbon!
di: van Der Ploeg, F, et al.
Pubblicazione: (2018) -
The agnostic's response to climate deniers: price carbon!
di: Van der Ploeg, R, et al.
Pubblicazione: (2017) -
Non-parametric pricing and hedging of exotic derivatives
di: Lyons, T, et al.
Pubblicazione: (2021) -
Normal tissue transcriptional signatures for tumor-type-agnostic phenotype prediction
di: Corey Weistuch, et al.
Pubblicazione: (2024-11-01)