Salta al contenuto
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Avanzata
  • Fast and robust motion correct...
  • Citazione
  • Invia SMS
  • Invia email
  • Stampa
  • Esporta il record
    • Esporta a RefWorks
    • Esporta a EndNoteWeb
    • Esporta a EndNote
  • PLink permanente
Fast and robust motion correction of cardiovascular magnetic resonance T1-mapping using data-driven convolutional neural networks for generalisability

Fast and robust motion correction of cardiovascular magnetic resonance T1-mapping using data-driven convolutional neural networks for generalisability

Dettagli Bibliografici
Autori principali: Gonzales, RA, Zhang, Q, Papież, BW, Werys, K, Lukaschuk, E, Popescu, IA, Burrage, MK, Shanmuganathan, M, Ferreira, VM, Piechnik, SK
Natura: Conference item
Lingua:English
Pubblicazione: Society for Cardiovascular Magnetic Resonance 2022
  • Posseduto
  • Descrizione
  • Documenti analoghi
  • MARC21

Documenti analoghi

  • MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks
    di: Gonzales, RA, et al.
    Pubblicazione: (2021)
  • MOCOnet: Robust Motion Correction of Cardiovascular Magnetic Resonance T1 Mapping Using Convolutional Neural Networks
    di: Ricardo A. Gonzales, et al.
    Pubblicazione: (2021-11-01)
  • Development of deep learning virtual native enhancement for gadolinium-free myocardial infarction and viability assessment
    di: Zhang, Q, et al.
    Pubblicazione: (2022)
  • Ensemble of deep convolutional neural networks with Monte Carlo dropout sampling for automated image segmentation quality control and robust deep learning using small datasets
    di: Hann, E, et al.
    Pubblicazione: (2021)
  • Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods
    di: Burrage, MK, et al.
    Pubblicazione: (2021)

Opzioni di ricerca

  • Ultime ricerche
  • Ricerca avanzata

Cerca

  • Scorri il catalogo
  • Scorri in ordine alfabetico
  • Esplora selezioni
  • Materiali riservati (per i corsi)
  • Nuovi documenti

Serve aiuto?

  • Suggerimenti per la ricerca
  • Chiedi al bibliotecario
  • FAQ