Pitman's 2M - X theorem for skip-free random walks with Markovian increments
Let (ξ k, k ≥ 0) be a Markov chain on {-1, +1} with ξ 0 = 1 and transition probabilities P(ξ k+1 = 1|ξ k = 1) = a and P(ξ k+1 = -1|ξ k = -1) = b < a. Set X 0 = 0, X n = ξ 1+⋯+ξ n and M n = max 0≤k≤n X k. We prove that the process 2M - X has the same law as that of X conditioned to stay non-ne...
المؤلفون الرئيسيون: | Hambly, B, Martin, J, O'Connell, N |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2001
|
مواد مشابهة
-
Pitman’s Measure of Closeness for Weighted Random Variables
حسب: Mosayeb Ahmadi, وآخرون
منشور في: (2024-07-01) -
Local Limit Theorems for Sequences of Simple Random Walks on Graphs
حسب: Croydon, D, وآخرون
منشور في: (2008) -
The effects of random reset on the dynamics of a non-Markovian random walk
حسب: Farhad Jafarpour Hamadani, وآخرون
منشور في: (2023-05-01) -
Generalized Polya Urn for Time-Varying Pitman-Yor Processes
حسب: Caron, F, وآخرون
منشور في: (2017) -
A Compound Poisson Perspective of Ewens–Pitman Sampling Model
حسب: Emanuele Dolera, وآخرون
منشور في: (2021-11-01)