Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware
A reduction of computational cost would allow higher resolution in numerical weather predictions within the same budget for computation. This paper investigates two approaches that promise significant savings in computational cost: the use of reduced precision hardware, which reduces floating point...
मुख्य लेखकों: | Dueben, P, Palmer, T |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
American Meteorological Society
2014
|
समान संसाधन
-
On the use of inexact, pruned hardware in atmospheric modelling.
द्वारा: Düben, P, और अन्य
प्रकाशित: (2014) -
Machine learning emulation of gravity wave drag in numerical weather forecasting
द्वारा: Chantry, M, और अन्य
प्रकाशित: (2021) -
WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting
द्वारा: Stephan Rasp, और अन्य
प्रकाशित: (2020-11-01) -
Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting
द्वारा: Matthew Chantry, और अन्य
प्रकाशित: (2021-07-01) -
An approach to secure weather and climate models against hardware faults
द्वारा: Dueben, P, और अन्य
प्रकाशित: (2017)