Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware
A reduction of computational cost would allow higher resolution in numerical weather predictions within the same budget for computation. This paper investigates two approaches that promise significant savings in computational cost: the use of reduced precision hardware, which reduces floating point...
主要な著者: | Dueben, P, Palmer, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
American Meteorological Society
2014
|
類似資料
-
On the use of inexact, pruned hardware in atmospheric modelling.
著者:: Düben, P, 等
出版事項: (2014) -
Machine learning emulation of gravity wave drag in numerical weather forecasting
著者:: Chantry, M, 等
出版事項: (2021) -
WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting
著者:: Stephan Rasp, 等
出版事項: (2020-11-01) -
Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting
著者:: Matthew Chantry, 等
出版事項: (2021-07-01) -
An approach to secure weather and climate models against hardware faults
著者:: Dueben, P, 等
出版事項: (2017)