Deflation for semismooth equations
Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a def...
Hlavní autoři: | Farrell, P, Croci, M, Surowiec, T |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Taylor and Francis
2019
|
Podobné jednotky
-
Semismooth Function on Riemannian Manifolds
Autor: E. Ghahraei
Vydáno: (2011-06-01) -
Sparse-spike seismic inversion with semismooth newton algorithm solver
Autor: Ronghuo Dai
Vydáno: (2024-08-01) -
Computing stationary solutions of the two-dimensional Gross–Pitaevskii equation with deflated continuation
Autor: Charalampidis, E, a další
Vydáno: (2017) -
On strong semismoothness and superlinear convergence of complementarity problems over homogeneous cones
Autor: Nguyen, Hai Ha
Vydáno: (2018) -
Deflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equation
Autor: Boullé, N, a další
Vydáno: (2020)