Scalable Bayesian nonparametric measures for exploring pairwise dependence via Dirichlet Process Mixtures

In this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Filippi, S, Holmes, C, Nieto Barajas, L
Materialtyp: Journal article
Publicerad: Institute of Mathematical Statistics 2016