Scalable Bayesian nonparametric measures for exploring pairwise dependence via Dirichlet Process Mixtures
In this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to...
Hauptverfasser: | Filippi, S, Holmes, C, Nieto Barajas, L |
---|---|
Format: | Journal article |
Veröffentlicht: |
Institute of Mathematical Statistics
2016
|
Ähnliche Einträge
-
A Bayesian nonparametric approach to testing for dependence between random variables
von: Filippi, S, et al.
Veröffentlicht: (2016) -
Dynamic clustering via asymptotics of the dependent Dirichlet process mixture
von: Campbell, Trevor David, et al.
Veröffentlicht: (2015) -
Bayesian inference for dynamic models with dirichlet process mixtures
von: Caron, F, et al.
Veröffentlicht: (2006) -
Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks
von: Gray-Davies, T, et al.
Veröffentlicht: (2016) -
Characterizing variation of nonparametric random probability measures using the Kullback–Leibler divergence
von: Watson, J, et al.
Veröffentlicht: (2016)