A general framework for updating belief distributions
<p>We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered as a s...
Main Authors: | Holmes, C, Bissiri, P, Walker, S |
---|---|
Formato: | Journal article |
Publicado em: |
Wiley
2015
|
Registos relacionados
-
A Definition of Conditional Probability with Non-Stochastic Information
Por: Pier Giovanni Bissiri, et al.
Publicado em: (2018-08-01) -
The war veteran in Jean-Pierre Guingané’s drama: between social activism and intellectualism
Por: Amadou Bissiri
Publicado em: (2019-08-01) -
A pessimistic view of optimistic belief updating
Por: Shah, P, et al.
Publicado em: (2016) -
The Development of a General Disaster Preparedness Belief Scale Using the Health Belief Model as a Theoretical Framework
Por: Ebru Inal, et al.
Publicado em: (2018-01-01) -
Belief updating in bipolar disorder predicts time of recurrence
Por: Ossola, P, et al.
Publicado em: (2020)