On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
Local regularity of axially symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of Type I. © Taylor and Francis Group, LLC.
主要な著者: | Seregin, G, Sverak, V |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2009
|
類似資料
-
On the number of singular points of weak solutions to the Navier-Stokes equations
著者:: Seregin, G
出版事項: (2001) -
Liouville theorems for the Navier-Stokes equations and applications
著者:: Koch, G, 等
出版事項: (2009) -
Liouville theorems for the Navier-Stokes equations and applications
著者:: Koch, G, 等
出版事項: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
著者:: Seregin, G, 等
出版事項: (2016) -
On stability of weak Navier–Stokes solutions with large L 3,∞ initial data
著者:: Barker, T, 等
出版事項: (2018)