On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
Local regularity of axially symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of Type I. © Taylor and Francis Group, LLC.
Үндсэн зохиолчид: | Seregin, G, Sverak, V |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
2009
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
On the number of singular points of weak solutions to the Navier-Stokes equations
-н: Seregin, G
Хэвлэсэн: (2001) -
Liouville theorems for the Navier-Stokes equations and applications
-н: Koch, G, зэрэг
Хэвлэсэн: (2009) -
Liouville theorems for the Navier-Stokes equations and applications
-н: Koch, G, зэрэг
Хэвлэсэн: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
-н: Seregin, G, зэрэг
Хэвлэсэн: (2016) -
On stability of weak Navier–Stokes solutions with large L 3,∞ initial data
-н: Barker, T, зэрэг
Хэвлэсэн: (2018)