On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
Local regularity of axially symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of Type I. © Taylor and Francis Group, LLC.
मुख्य लेखकों: | Seregin, G, Sverak, V |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
2009
|
समान संसाधन
-
On the number of singular points of weak solutions to the Navier-Stokes equations
द्वारा: Seregin, G
प्रकाशित: (2001) -
Liouville theorems for the Navier-Stokes equations and applications
द्वारा: Koch, G, और अन्य
प्रकाशित: (2009) -
Liouville theorems for the Navier-Stokes equations and applications
द्वारा: Koch, G, और अन्य
प्रकाशित: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
द्वारा: Seregin, G, और अन्य
प्रकाशित: (2016) -
On stability of weak Navier–Stokes solutions with large L 3,∞ initial data
द्वारा: Barker, T, और अन्य
प्रकाशित: (2018)