On the smallest non‐abelian quotient of Aut(Fn)

We show that the smallest non-abelian quotient of $\mathrm{Aut}(F_n)$ is $\mathrm{PSL}_n(\mathbb{Z}/2\mathbb{Z}) = \mathrm{L}_n(2)$, thus confirming a conjecture of Mecchia--Zimmermann. In the course of the proof we give an exponential (in $n$) lower bound for the cardinality of a set on which $\mat...

Full description

Bibliographic Details
Main Authors: Baumeister, B, Kielak, D, Pierro, E
Format: Journal article
Language:English
Published: Wiley 2019