Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
Główni autorzy: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Nature Publishing Group
2016
|
Podobne zapisy
-
"Not not bad" is not "bad": A distributional account of negation
od: Hermann, K, i wsp.
Wydane: (2013) -
New Directions in Vector Space Models of Meaning
od: Grefenstette, E, i wsp.
Wydane: (2014) -
A Deep Architecture for Semantic Parsing
od: Grefenstette, E, i wsp.
Wydane: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
od: Kočiský, T, i wsp.
Wydane: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
od: Balaguer, J, i wsp.
Wydane: (2016)