Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
Главные авторы: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Nature Publishing Group
2016
|
Схожие документы
-
"Not not bad" is not "bad": A distributional account of negation
по: Hermann, K, и др.
Опубликовано: (2013) -
New Directions in Vector Space Models of Meaning
по: Grefenstette, E, и др.
Опубликовано: (2014) -
A Deep Architecture for Semantic Parsing
по: Grefenstette, E, и др.
Опубликовано: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
по: Kočiský, T, и др.
Опубликовано: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
по: Balaguer, J, и др.
Опубликовано: (2016)