Hybrid computing using a neural network with dynamic external memory
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machin...
Asıl Yazarlar: | Graves, A, Wayne, G, Reynolds, M, Harley, T, Danihelka, I, Grabska-Barwińska, A, Colmenarejo, S, Grefenstette, E, Ramalho, T, Agapiou, J, Badia, A, Hermann, K, Zwols, Y, Ostrovski, G, Cain, A, King, H, Summerfield, C, Blunsom, P, Kavukcuoglu, K, Hassabis, D |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Nature Publishing Group
2016
|
Benzer Materyaller
-
"Not not bad" is not "bad": A distributional account of negation
Yazar:: Hermann, K, ve diğerleri
Baskı/Yayın Bilgisi: (2013) -
New Directions in Vector Space Models of Meaning
Yazar:: Grefenstette, E, ve diğerleri
Baskı/Yayın Bilgisi: (2014) -
A Deep Architecture for Semantic Parsing
Yazar:: Grefenstette, E, ve diğerleri
Baskı/Yayın Bilgisi: (2014) -
Semantic parsing with semi-supervised sequential autoencoders
Yazar:: Kočiský, T, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Neural mechanisms of hierarchical planning in a virtual subway network
Yazar:: Balaguer, J, ve diğerleri
Baskı/Yayın Bilgisi: (2016)