Intermediate and small scale limiting theorems for random fields
In this paper we study the nodal lines of random eigenfunctions of the Laplacian on the torus, the so-called ‘arithmetic waves’. To be more precise, we study the number of intersections of the nodal line with a straight interval in a given direction. We are interested in how this number depends on t...
Hoofdauteurs: | Beliaev, D, Maffucci, RW |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
International Press
2022
|
Gelijkaardige items
-
Coupling of stationary fields with application to arithmetic waves
door: Beliaev, D, et al.
Gepubliceerd in: (2022) -
On limit theorems for random fields
door: Rimas Banys
Gepubliceerd in: (2009-12-01) -
On the Asymptotic Behavior in Random Fields: The Central Limit Theorem
door: Mohammad Mehdi Saber, et al.
Gepubliceerd in: (2019-09-01) -
On the intermediate value theorem over a non-Archimedean field
door: Luigi Corgnier, et al.
Gepubliceerd in: (2013-11-01) -
Random waves on T3: nodal area variance and lattice point correlations
door: Benatar, J, et al.
Gepubliceerd in: (2017)