A machine learning artefact detection method for single-channel infant event-related potential studies
Objective. Automated detection of artefact in stimulus-evoked electroencephalographic (EEG) data recorded in neonates will improve the reproducibility and speed of analysis in clinical research compared with manual identification of artefact. Some studies use very short, single-channel epochs of EEG...
主要な著者: | Marchant, S, van der Vaart, M, Pillay, K, Baxter, L, Bhatt, A, Fitzgibbon, S, Hartley, C, Slater, R |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
IOP Publishing
2024
|
類似資料
-
Sensory event-related potential morphology predicts age in premature infants
著者:: Zandvoort, CS, 等
出版事項: (2023) -
Premature infants display discriminable behavioral, physiological, and brain responses to noxious and nonnoxious stimuli
著者:: van der Vaart, M, 等
出版事項: (2021) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
著者:: Duff, E, 等
出版事項: (2020) -
The PiNe box: development and validation of an electronic device to time-lock multimodal responses to sensory stimuli in hospitalised infants
著者:: Worley, A, 等
出版事項: (2023) -
Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study
著者:: Duff, EP, 等
出版事項: (2020)