Large deviation based upper bounds for the LCS-problem
We analyse and apply a large deviation and Montecarlo simulation based method for the computation of improved upper bounds on the Chvatal-Sankoff constant for i.i.d. random sequences over a finite alphabet. Our theoretical results show that this method converges to the exact value of when a control...
主要な著者: | Hauser, R, Martinez, S, Matzinger, H |
---|---|
フォーマット: | Report |
出版事項: |
Unspecified
2003
|
類似資料
-
Upper bounds on the mean curve in the LCS problem
著者:: Durringer, C, 等
出版事項: (2008) -
Large deviations-based upper bounds on the expected relative length of longest common subsequences
著者:: Hauser, R, 等
出版事項: (2006) -
Approximation to the mean curve in the LCS problem
著者:: Durringer, C, 等
出版事項: (2006) -
Approximation to the mean curve in the LCS problem
著者:: Durringer, C, 等
出版事項: (2008) -
An upper bound on the convergence rate of a second functional in optimal sequence alignment
著者:: Hauser, R, 等
出版事項: (2017)