Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Κύριοι συγγραφείς: | Nakatsukasa, Y, Noferini, V |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Elsevier
2019
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
ανά: Fu Sun, κ.ά.
Έκδοση: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
ανά: Mabel Cuesta
Έκδοση: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
ανά: Marta Calanchi, κ.ά.
Έκδοση: (2021-12-01) -
Rectangular eigenvalue problems
ανά: Hashemi, B, κ.ά.
Έκδοση: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
ανά: S. F. M. Ibrahim
Έκδοση: (1998-01-01)