Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Main Authors: | Nakatsukasa, Y, Noferini, V |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Elsevier
2019
|
פריטים דומים
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
מאת: Fu Sun, et al.
יצא לאור: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
מאת: Mabel Cuesta
יצא לאור: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
מאת: Marta Calanchi, et al.
יצא לאור: (2021-12-01) -
Rectangular eigenvalue problems
מאת: Hashemi, B, et al.
יצא לאור: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
מאת: S. F. M. Ibrahim
יצא לאור: (1998-01-01)