Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Egile Nagusiak: | Nakatsukasa, Y, Noferini, V |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Elsevier
2019
|
Antzeko izenburuak
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
nork: Fu Sun, et al.
Argitaratua: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
nork: Mabel Cuesta
Argitaratua: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
nork: Marta Calanchi, et al.
Argitaratua: (2021-12-01) -
Rectangular eigenvalue problems
nork: Hashemi, B, et al.
Argitaratua: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
nork: S. F. M. Ibrahim
Argitaratua: (1998-01-01)