Stochastic expectation maximization with variance reduction
Expectation-Maximization (EM) is a popular tool for learning latent variable models, but the vanilla batch EM does not scale to large data sets because the whole data set is needed at every E-step. Stochastic Expectation Maximization (sEM) reduces the cost of E-step by stochastic approximation. Howe...
Main Authors: | , , , |
---|---|
Format: | Conference item |
Published: |
Massachusetts Institute of Technology Press
2018
|