Stochastic expectation maximization with variance reduction
Expectation-Maximization (EM) is a popular tool for learning latent variable models, but the vanilla batch EM does not scale to large data sets because the whole data set is needed at every E-step. Stochastic Expectation Maximization (sEM) reduces the cost of E-step by stochastic approximation. Howe...
主要な著者: | Chen, J, Zhu, J, Teh, Y, Zhang, T |
---|---|
フォーマット: | Conference item |
出版事項: |
Massachusetts Institute of Technology Press
2018
|
類似資料
-
Non-negative variance component estimation for the partial EIV model by the expectation maximization algorithm
著者:: Leyang Wang, 等
出版事項: (2020-01-01) -
On the pricing of forward-start variance swaps with stochastic volatility and stochastic interest rate
著者:: Roslan, Teh Raihana Nazirah
出版事項: (2017) -
Pricing variance swaps under stochastic volatility and stochastic interest rate
著者:: Cao, Jiling, 等
出版事項: (2016) -
Exploration of the (non-)asymptotic bias and variance of stochastic gradient Langevin dynamics
著者:: Vollmer, S, 等
出版事項: (2016) -
Accelerated Stochastic Variance Reduction Gradient Algorithms for Robust Subspace Clustering
著者:: Hongying Liu, 等
出版事項: (2024-06-01)