A sparse object category model for efficient learning and exhaustive recognition
We present a "parts and structure" model for object category recognition that can be learnt efficiently and in a semi-supervised manner: the model is learnt from example images containing category instances, without requiring segmentation from background clutter. The model is a sparse repr...
Hlavní autoři: | Fergus, R, Perona, P, Zisserman, A |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2005
|
Podobné jednotky
-
A sparse object category model for efficient learning and complete recognition
Autor: Fergus, R, a další
Vydáno: (2006) -
Learning object categories from Google’s image search
Autor: Fergus, R, a další
Vydáno: (2005) -
Learning object categories from internet image searches
Autor: Fergus, R, a další
Vydáno: (2010) -
Object class recognition by unsupervised scale-invariant learning
Autor: Fergus, R, a další
Vydáno: (2003) -
A visual category filter for Google Images
Autor: Fergus, R, a další
Vydáno: (2004)