A sparse object category model for efficient learning and exhaustive recognition
We present a "parts and structure" model for object category recognition that can be learnt efficiently and in a semi-supervised manner: the model is learnt from example images containing category instances, without requiring segmentation from background clutter. The model is a sparse repr...
Главные авторы: | Fergus, R, Perona, P, Zisserman, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2005
|
Схожие документы
-
A sparse object category model for efficient learning and complete recognition
по: Fergus, R, и др.
Опубликовано: (2006) -
Learning object categories from Google’s image search
по: Fergus, R, и др.
Опубликовано: (2005) -
Learning object categories from internet image searches
по: Fergus, R, и др.
Опубликовано: (2010) -
Object class recognition by unsupervised scale-invariant learning
по: Fergus, R, и др.
Опубликовано: (2003) -
A visual category filter for Google Images
по: Fergus, R, и др.
Опубликовано: (2004)