Learning meaningful latent space representations for patient risk stratification: model development and validation for dengue and other acute febrile illnes
<p><strong>Background:</strong> Increased data availability has prompted the creation of clinical decision support systems. These systems utilise clinical information to enhance health care provision, both to predict the likelihood of specific clinical outcomes or evaluate the risk...
Auteurs principaux: | Hernandez, B, Stiff, O, Ming, DK, Ho Quang, C, Nguyen Lam, V, Nguyen Minh, T, Nguyen Van Vinh, C, Nguyen Minh, N, Nguyen Quang, H, Phung Khanh, L, Dong Thi Hoai, T, Dinh The, T, Huynh Trung, T, Wills, B, Simmons, CP, Holmes, AH, Yacoub, S, Georgiou, P |
---|---|
Autres auteurs: | Vietnam ICU Translational Applications Laboratory (VITAL) investigators |
Format: | Journal article |
Langue: | English |
Publié: |
Frontiers Media
2023
|
Documents similaires
-
Learning meaningful latent space representations for patient risk stratification: Model development and validation for dengue and other acute febrile illness
par: Bernard Hernandez, et autres
Publié: (2023-02-01) -
Applied machine learning for the risk-stratification and clinical decision support of hospitalised patients with dengue in Vietnam
par: Damien K. Ming, et autres
Publié: (2022-01-01) -
Applied machine learning for the risk-stratification and clinical decision support of hospitalised patients with dengue in Vietnam.
par: Damien K Ming, et autres
Publié: (2022-01-01) -
Nghiên cứu động học suy giảm hàm lượng polyphenol và hoạt tính sinh học của bột sấy phun cao chiết trâm vỏ đỏ (Syzygium Zeylanicum (L.) DC.) trong điều kiện cưỡng bức
par: Nguyễn Minh Trung, et autres
Publié: (2023-10-01) -
AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds
par: Quang Minh Bui, et autres
Publié: (2023-07-01)