Characterisation of a computationally defined treatment target for anxiety and depression
Preferential learning from negative at the expense of positive events, has been causally linked to anxiety and depression. This suggests that interventions which target such negative learning bias may reduce symptoms of the illness, although the best way to achieve this is not clear. Recent computat...
المؤلفون الرئيسيون: | Browning, M, Pulcu, E |
---|---|
التنسيق: | Conference item |
منشور في: |
Elsevier
2017
|
مواد مشابهة
-
Using computational psychiatry to rule out the hidden causes of depression
حسب: Pulcu, E, وآخرون
منشور في: (2017) -
Depression is associated with reduced outcome sensitivity in a dual valence, magnitude learning task
حسب: Pulcu, E, وآخرون
منشور في: (2023) -
Affective bias as a rational response to the statistics of rewards and punishments
حسب: Pulcu, E, وآخرون
منشور في: (2017) -
The misestimation of uncertainty in affective disorders
حسب: Pulcu, E, وآخرون
منشور في: (2019) -
Affective bias as a rational response to the statistics of rewards and punishments
حسب: Erdem Pulcu, وآخرون
منشور في: (2017-10-01)