Characterisation of a computationally defined treatment target for anxiety and depression
Preferential learning from negative at the expense of positive events, has been causally linked to anxiety and depression. This suggests that interventions which target such negative learning bias may reduce symptoms of the illness, although the best way to achieve this is not clear. Recent computat...
Hlavní autoři: | Browning, M, Pulcu, E |
---|---|
Médium: | Conference item |
Vydáno: |
Elsevier
2017
|
Podobné jednotky
-
Using computational psychiatry to rule out the hidden causes of depression
Autor: Pulcu, E, a další
Vydáno: (2017) -
Depression is associated with reduced outcome sensitivity in a dual valence, magnitude learning task
Autor: Pulcu, E, a další
Vydáno: (2023) -
Affective bias as a rational response to the statistics of rewards and punishments
Autor: Pulcu, E, a další
Vydáno: (2017) -
The misestimation of uncertainty in affective disorders
Autor: Pulcu, E, a další
Vydáno: (2019) -
Affective bias as a rational response to the statistics of rewards and punishments
Autor: Erdem Pulcu, a další
Vydáno: (2017-10-01)