Characterisation of a computationally defined treatment target for anxiety and depression
Preferential learning from negative at the expense of positive events, has been causally linked to anxiety and depression. This suggests that interventions which target such negative learning bias may reduce symptoms of the illness, although the best way to achieve this is not clear. Recent computat...
Автори: | Browning, M, Pulcu, E |
---|---|
Формат: | Conference item |
Опубліковано: |
Elsevier
2017
|
Схожі ресурси
Схожі ресурси
-
Using computational psychiatry to rule out the hidden causes of depression
за авторством: Pulcu, E, та інші
Опубліковано: (2017) -
Depression is associated with reduced outcome sensitivity in a dual valence, magnitude learning task
за авторством: Pulcu, E, та інші
Опубліковано: (2023) -
Affective bias as a rational response to the statistics of rewards and punishments
за авторством: Pulcu, E, та інші
Опубліковано: (2017) -
The misestimation of uncertainty in affective disorders
за авторством: Pulcu, E, та інші
Опубліковано: (2019) -
Affective bias as a rational response to the statistics of rewards and punishments
за авторством: Erdem Pulcu, та інші
Опубліковано: (2017-10-01)