MotionTransformer: Transferring neural inertial tracking between domains
Inertial information processing plays a pivotal role in egomotion awareness for mobile agents, as inertial measurements are entirely egocentric and not environment dependent. However, they are affected greatly by changes in sensor placement/orientation or motion dynamics, and it is infeasible to col...
Päätekijät: | Chen, C, Miao, Y, Lu, CX, Xie, L, Blunsom, P, Markham, A, Trigoni, N |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
Association for the Advancement of Artificial Intelligence
2019
|
Samankaltaisia teoksia
-
Selective sensor fusion for neural visual-inertial odometry
Tekijä: Chen, C, et al.
Julkaistu: (2019) -
Deep neural network based inertial odometry using low-cost inertial measurement units
Tekijä: Chen, C, et al.
Julkaistu: (2019) -
Deep learning based pedestrian inertial navigation: methods, dataset and on-device inference
Tekijä: Chen, C, et al.
Julkaistu: (2020) -
Milli-RIO: ego-motion estimation with low-cost millimetre-wave radar
Tekijä: Almalioglu, Y, et al.
Julkaistu: (2020) -
IONet: Learning to Cure the Curse of Drift in Inertial Odometry
Tekijä: Chen, C, et al.
Julkaistu: (2018)