M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance

We present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform motion estimation in real-time, which produces robust motion estimates in a global frame b...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Das, S, Mahabadi, N, Fallon, M, Chatterjee, S
Formáid: Conference item
Teanga:English
Foilsithe / Cruthaithe: IEEE 2023
_version_ 1826310856318648320
author Das, S
Mahabadi, N
Fallon, M
Chatterjee, S
author_facet Das, S
Mahabadi, N
Fallon, M
Chatterjee, S
author_sort Das, S
collection OXFORD
description We present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform motion estimation in real-time, which produces robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS translation components using a factor graph framework. We also propose methods to account for signal loss with a novel synchronization and fusion mechanism. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ≈ 7 Km). From our evaluations, we show an average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair, in sensor dropout scenarios.
first_indexed 2024-03-07T07:58:11Z
format Conference item
id oxford-uuid:e39d26ff-5957-4f8f-ad5a-441bd08e3583
institution University of Oxford
language English
last_indexed 2024-03-07T07:58:11Z
publishDate 2023
publisher IEEE
record_format dspace
spelling oxford-uuid:e39d26ff-5957-4f8f-ad5a-441bd08e35832023-09-01T12:50:26ZM-LIO: Multi-lidar, multi-IMU odometry with sensor dropout toleranceConference itemhttp://purl.org/coar/resource_type/c_5794uuid:e39d26ff-5957-4f8f-ad5a-441bd08e3583EnglishSymplectic ElementsIEEE2023Das, SMahabadi, NFallon, MChatterjee, SWe present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform motion estimation in real-time, which produces robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS translation components using a factor graph framework. We also propose methods to account for signal loss with a novel synchronization and fusion mechanism. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ≈ 7 Km). From our evaluations, we show an average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair, in sensor dropout scenarios.
spellingShingle Das, S
Mahabadi, N
Fallon, M
Chatterjee, S
M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title_full M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title_fullStr M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title_full_unstemmed M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title_short M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
title_sort m lio multi lidar multi imu odometry with sensor dropout tolerance
work_keys_str_mv AT dass mliomultilidarmultiimuodometrywithsensordropouttolerance
AT mahabadin mliomultilidarmultiimuodometrywithsensordropouttolerance
AT fallonm mliomultilidarmultiimuodometrywithsensordropouttolerance
AT chatterjees mliomultilidarmultiimuodometrywithsensordropouttolerance