Hand classification of fMRI ICA noise components
We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms,...
Главные авторы: | Griffanti, L, Douaud, G, Bijsterbosh, J, Evangelisti, S, Alfaro-Almagro, F, Glasser, M, Duff, E, Fitzgibbon, S, Westphal, R, Carone, D, Beckmann, C, Smith, S |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Elsevier
2016
|
Схожие документы
-
Impact of automated ICA-based denoising of fMRI data in acute stroke patients
по: Carone, D, и др.
Опубликовано: (2017) -
Impact of automated ICA-based denoising of fMRI data in acute stroke patients
по: D. Carone, и др.
Опубликовано: (2017-01-01) -
Classification of temporal ICA components for separating global noise from fMRI data: reply to power
по: Glasser, MF, и др.
Опубликовано: (2019) -
Exploratory motion analysis in fMRI using ICA
по: Bannister, P, и др.
Опубликовано: (2001) -
ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
по: Griffanti, L, и др.
Опубликовано: (2014)