Describing composite urban workspaces

In this paper we present an appearance-based method for augmenting maps of outdoor urban environments with higher-order, semantic labels. Our motivation is to increase the value and utility of the typically low-level representations built by contemporary SLAM algorithms. A supervised learning scheme...

全面介绍

书目详细资料
Main Authors: Posner, I, Schroeter, D, Newman, P, IEEE
格式: Conference item
出版: 2007
实物特征
总结:In this paper we present an appearance-based method for augmenting maps of outdoor urban environments with higher-order, semantic labels. Our motivation is to increase the value and utility of the typically low-level representations built by contemporary SLAM algorithms. A supervised learning scheme is employed to train a set of classifiers to respond to common scene attributes given a mixture of geometric and visual scene information. The union of classifier responses yields a composite description of the local workspace. We apply our method to three large data sets. © 2007 IEEE.