Using deep convolutional neural networks to forecast spatial patterns of Amazonian deforestation
<p>1. Tropical forests are subject to diverse deforestation pressures while their conservation is essential to achieve global climate goals. Predicting the location of deforestation is challenging due to the complexity of the natural and human systems involved but accurate and timely forecasts...
Hauptverfasser: | Ball, JGC, Petrova, K, Coomes, DA, Flaxman, S |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Wiley
2022
|
Ähnliche Einträge
-
THE POLITICS OF AMAZONIAN DEFORESTATION
von: Hurrell, A
Veröffentlicht: (1991) -
Deforestation limits evolutionary rescue under climate change in Amazonian lizards
von: Azevedo, JAR, et al.
Veröffentlicht: (2024) -
Spatial patterns and fire response of recent Amazonian droughts
von: Aragão, L, et al.
Veröffentlicht: (2007) -
CoordGate: efficiently computing spatially-varying convolutions in convolutional neural networks
von: Howard, S, et al.
Veröffentlicht: (2023) -
Review of deep convolution neural network in image classification
von: Al-Saffar, Ahmed Ali Mohammed, et al.
Veröffentlicht: (2017)