Systematic comparison of neural architectures and training approaches for open information extraction
The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form (subject, predicate, object). For example, given the sentence »Beethoven composed the Ode to Joy.«, we are expected to extract the triple (Beethoven,...
المؤلفون الرئيسيون: | Hohenecker, P, Mtumbuka, F, Kocijan, V, Lukasiewicz, T |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Association for Computational Linguistics
2020
|
مواد مشابهة
-
Deep neural open information extraction with background knowledge
حسب: Mtumbuka, FM
منشور في: (2022) -
Ontology reasoning with deep neural networks
حسب: Hohenecker, P, وآخرون
منشور في: (2020) -
Ontology reasoning with deep neural networks (extended abstract)
حسب: Hohenecker, P, وآخرون
منشور في: (2020) -
Controlling text edition by changing answers of specific questions
حسب: Sha, L, وآخرون
منشور في: (2021) -
Does the objective matter? Comparing training objectives for pronoun resolution
حسب: Yordanov, Y, وآخرون
منشور في: (2020)