Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
मुख्य लेखकों: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
Springer International Publishing
2015
|
समान संसाधन
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
द्वारा: Simons, C, और अन्य
प्रकाशित: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
द्वारा: Steinberg Martin H, और अन्य
प्रकाशित: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
द्वारा: Simon Grund, और अन्य
प्रकाशित: (2016-10-01) -
Flexible Imputation of Missing Data
द्वारा: Hakan Demirtas
प्रकाशित: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
द्वारा: Alabadla, Mustafa, और अन्य
प्रकाशित: (2022)