Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
Principais autores: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer International Publishing
2015
|
Registros relacionados
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
por: Simons, C, et al.
Publicado em: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Steinberg Martin H, et al.
Publicado em: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
por: Simon Grund, et al.
Publicado em: (2016-10-01) -
Flexible Imputation of Missing Data
por: Hakan Demirtas
Publicado em: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
por: Alabadla, Mustafa, et al.
Publicado em: (2022)