Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
Asıl Yazarlar: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer International Publishing
2015
|
Benzer Materyaller
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
Yazar:: Simons, C, ve diğerleri
Baskı/Yayın Bilgisi: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
Yazar:: Steinberg Martin H, ve diğerleri
Baskı/Yayın Bilgisi: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
Yazar:: Simon Grund, ve diğerleri
Baskı/Yayın Bilgisi: (2016-10-01) -
Flexible Imputation of Missing Data
Yazar:: Hakan Demirtas
Baskı/Yayın Bilgisi: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
Yazar:: Alabadla, Mustafa, ve diğerleri
Baskı/Yayın Bilgisi: (2022)