Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
Päätekijät: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Springer International Publishing
2015
|
Samankaltaisia teoksia
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
Tekijä: Simons, C, et al.
Julkaistu: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
Tekijä: Steinberg Martin H, et al.
Julkaistu: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
Tekijä: Simon Grund, et al.
Julkaistu: (2016-10-01) -
Flexible Imputation of Missing Data
Tekijä: Hakan Demirtas
Julkaistu: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
Tekijä: Alabadla, Mustafa, et al.
Julkaistu: (2022)