Fourier policy gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the lo...
Hlavní autoři: | Fellows, M, Ciosek, K, Whiteson, S |
---|---|
Médium: | Conference item |
Vydáno: |
Journal of Machine Learning Research
2018
|
Podobné jednotky
-
Expected policy gradients
Autor: Ciosek, K, a další
Vydáno: (2018) -
Expected policy gradients for reinforcement learning
Autor: Ciosek, K, a další
Vydáno: (2020) -
OFFER: Off-environment reinforcement learning
Autor: Ciosek, K, a další
Vydáno: (2017) -
Counterfactual multi−agent policy gradients
Autor: Foerster, J, a další
Vydáno: (2018) -
Fast efficient hyperparameter tuning for policy gradient methods
Autor: Paul, S, a další
Vydáno: (2019)