A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof
We consider arithmetic varieties endowed with an action of the group scheme of n-th roots of unity and we define equivariant arithmetic K 0-theory for these varieties. We use the equivariant analytic torsion to define direct image maps in this context and we prove a Riemann-Roch theorem for the natu...
Main Authors: | Köhler, K, Roessler, D |
---|---|
Formato: | Journal article |
Publicado em: |
Springer Verlag
2001
|
Registos relacionados
A base-point-free definition of the Lefschetz invariant
Por: Coufal Vesta
Publicado em: (2006-01-01)
Por: Coufal Vesta
Publicado em: (2006-01-01)
Registos relacionados
-
A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
Por: Köhler, K, et al.
Publicado em: (2002) -
Un théorème du point fixe de Lefschetz en géométrie d'Arakelov
Por: Köhler, K, et al.
Publicado em: (1998) -
A fixed point formula of Lefschetz type in Arakelov geometry IV: The modular height of C.M. abelian varieties
Por: Koehler, K, et al.
Publicado em: (2003) -
An Adams-Riemann-Roch theorem in Arakelov geometry
Por: Roessler, D
Publicado em: (1999) -
Un théorème d’Adams-Riemann-Roch en géométrie d’Arakelov
Por: Roessler, D
Publicado em: (1996)