Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
We consider a degenerate chemotaxis model with two-species and two-stimuli in dimension d ≥ 3 and find two critical curves intersecting at one point which separate the global existence and blow up of weak solutions to the problem. More precisely, above these curves (i.e. subcritical case), the probl...
Hlavní autoři: | Carrillo de la Plata, JA, Lin, K |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
De Gruyter Open
2021
|
Podobné jednotky
-
Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
Autor: Carrillo Antonio José, a další
Vydáno: (2021-07-01) -
Blow-Up and Global Existence for a Degenerate Parabolic System with Nonlocal Sources
Autor: Ling Zhengqiu, a další
Vydáno: (2012-01-01) -
Global existence and blow-up analysis for some degenerate and quasilinear parabolic systems
Autor: Haihua Lu
Vydáno: (2009-08-01) -
Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities
Autor: Yongbin Wang, a další
Vydáno: (2019-12-01) -
Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations
Autor: Li Jing, a další
Vydáno: (2011-12-01)