Unsupervised learning of object landmarks by factorized spatial embeddings
Learning automatically the structure of object categories remains an important open problem in computer vision. In this paper, we propose a novel unsupervised approach that can discover and learn landmarks in object categories, thus characterizing their structure. Our approach is based on factorizin...
Главные авторы: | Thewlis, J, Bilen, H, Vedaldi, A |
---|---|
Формат: | Conference item |
Опубликовано: |
IEEE
2017
|
Схожие документы
-
Unsupervised learning of landmarks by descriptor vector exchange
по: Thewlis, J, и др.
Опубликовано: (2020) -
Modelling and unsupervised learning of symmetric deformable object categories
по: Thewlis, J, и др.
Опубликовано: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
по: Thewlis, J, и др.
Опубликовано: (2017) -
Unsupervised learning of object landmarks through conditional image generation
по: Jakab, T, и др.
Опубликовано: (2018) -
Unsupervised learning of probably symmetric deformable 3D objects from images in the wild
по: Wu, S, и др.
Опубликовано: (2021)