A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
The generalised minimal residual (GMRES) method is a common choice for solving the large non-symmetric linear systems that arise when numerically computing solutions of incompressible nonlinear elasticity problems using the finite element method. Analytic results on the performance of GMRES are avai...
主要な著者: | Pathmanathan, P, Whiteley, J, Chapman, S, Gavaghan, D |
---|---|
フォーマット: | Journal article |
出版事項: |
2010
|
類似資料
-
Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
著者:: Pathmanathan, P, 等
出版事項: (2010) -
A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
著者:: Pathmanathan, P, 等
出版事項: (2010) -
How descriptive are GMRES convergence bounds?
著者:: Embree, M
出版事項: (1999) -
A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations
著者:: Whiteley, J
出版事項: (2017) -
Inverse membrane problems in elasticity
著者:: Pathmanathan, P, 等
出版事項: (2009)