A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
The generalised minimal residual (GMRES) method is a common choice for solving the large non-symmetric linear systems that arise when numerically computing solutions of incompressible nonlinear elasticity problems using the finite element method. Analytic results on the performance of GMRES are avai...
Huvudupphovsmän: | Pathmanathan, P, Whiteley, J, Chapman, S, Gavaghan, D |
---|---|
Materialtyp: | Journal article |
Publicerad: |
2010
|
Liknande verk
Liknande verk
-
Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
av: Pathmanathan, P, et al.
Publicerad: (2010) -
A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
av: Pathmanathan, P, et al.
Publicerad: (2010) -
How descriptive are GMRES convergence bounds?
av: Embree, M
Publicerad: (1999) -
A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations
av: Whiteley, J
Publicerad: (2017) -
Inverse membrane problems in elasticity
av: Pathmanathan, P, et al.
Publicerad: (2009)