Poincaré inequality for one forms on four manifolds with bounded Ricci curvature
In this short note, we provide a quantitative global Poincar´e inequality for one forms on a closed Riemannian four manifold, in terms of an upper bound on the diameter, a positive lower bound on the volume, and a two-sided bound on Ricci curvature. This seems to be the first non-trivial result givi...
المؤلفون الرئيسيون: | Honda, S, Mondino, A |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer
2025
|
مواد مشابهة
-
Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds
حسب: Cavalletti, F, وآخرون
منشور في: (2018) -
Measure rigidity of Ricci curvature lower bounds
حسب: Cavalletti, F, وآخرون
منشور في: (2015) -
Almost euclidean isoperimetric inequalities in spaces satisfying local Ricci curvature lower bounds
حسب: Cavalletti, F, وآخرون
منشور في: (2018) -
Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds
حسب: Cavalletti, F, وآخرون
منشور في: (2016) -
Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds
حسب: Cavalletti, F, وآخرون
منشور في: (2017)