Fool me once: robust selective segmentation via out-of-distribution detection with contrastive learning
In this work, a neural network is trained to simultaneously perform segmentation and pixel-wise Out-of-Distribution (OoD) detection, such that the segmentation of unknown regions of scenes can be rejected. This is made possible by leveraging an OoD dataset with a novel contrastive objective and data...
Hlavní autoři: | Williams, DSW, Gadd, M, De Martini, D, Newman, P |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2021
|
Podobné jednotky
-
Mitigating distributional shift in semantic segmentation via uncertainty estimation from unlabeled data
Autor: Williams, DSW, a další
Vydáno: (2024) -
“Fool me once, …”: deception, morality and self-regeneration in decentralized markets
Autor: Orlando Gomes, a další
Vydáno: (2019-11-01) -
Masked γ-SSL: learning uncertainty estimation via masked image modeling
Autor: Williams, DSW, a další
Vydáno: (2024) -
You Only Attack Once: Single-Step DeepFool Algorithm
Autor: Jun Li, a další
Vydáno: (2024-12-01) -
Technology Office Announces Winners of the FoolMe Hackathon
Vydáno: (2022)